Roll No.	Answer Sheet No
Sig. of Candidate	Sig. of Invigilator

CHEMISTRY HSSC-I

SECTION – A (Marks 17) Time allowed: 25 Minutes										
								NOTE:-		Section—A is compulsory and comprises pages 1—2. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.
Q. 1	Ins	ert the con	rect option i.e. A / B /	C / D in the empty	box pr	ovided opposite				
		ch part. Each part carries one mark.								
	(i) If a compound has empirical formula C_3H_3O and its molecular mass is $110gmol^{-1}$ then what is the molecular formula of the compound?									
		Α.	C_3H_3O		B.	C_6H_6O				
		C.	$C_6H_6O_2$		D.	$C_3H_3O_2$				
	(ii)		is made of diamond hant in it?	ving mass 6g . Hov	v many	atoms are				
		Α.	6.02×10^{23}		B.	3.01×10^{23}				
		C.	1.505×10^{23}		D.	0.75×10^{23}				
	(iii) The technique in which a solute is separated from a solution by shaking the solution with a solvent in which the solute is more soluble and the added solvent does not mix with solution, is called									
		Α.	Crystallization		B.	Sublimation				
		C.	Chromatography		D.	Solvent Extraction				
	(iv)		are the SI units of excl	luded volume 'b' in		or Waals equation? $m^3 . mol^{-1}$				
		Α.	$dm^3 mol^{-1}$		B. D.	$m \cdot mol$ $mol \ m^{-3}$				
		C.	$mol.dm^{-3}$							
	(v)	Londo A. B. C. D.	n dispersion forces are Molecules of water in Atoms of Helium in g Molecules of solid ioo Molecules of Hydrog	i liquid state aseous state at high dine						
	(vi) The temperature at which two crystalline forms of the same substance can co-exist in equilibrium with each other is called Transition Temperature. The Transition Temperature of Grey tin (cubic) — White tin (Tetragonal) is:									
		Α.	13.2° C	, ,	В.	14.2° C				
		C.	15.2°C		D.	16.2°C				
	(vii) How many electrons can be accommodated in sub-shell for which $n=3$ and $l=2$?									
		Α	2		B.	6				
		C.	10		D.	14				
	(vii) A mole the ce	ecule has two lone pair ntral atom. The shape	s and two bond pair of molecule is:						
		A. C.	Linear Pyramidal		B. D.	Angular Tetrahedral				

DO NOT WRITE ANYTHING HERE

(ix)	Which equation define Lattice energy of the compound XY ? A. $X_{(S)} + Y_{(S)} \longrightarrow XY_{(S)}$						
	B.	$X_{(s)}^+ + Y_{(s)}^- \longrightarrow XY_{(s)}$					
	C.	$X_{(g)} + Y_{(g)} \longrightarrow XY_{(S)}$					
	D.	$X_{(g)}^+ + Y_{(g)}^- \longrightarrow XY_{(S)}$					
(x)	The unit of Kc for the reaction:						
	$N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$ will be:						
	A.	moles dm ⁻³	B.	moles ⁻¹ dm ⁺³			
	C.	$moles^2dm^{-3}$	D.	moles ⁻² dm ⁺⁶			
(xi)	(xi) The pH of milk at $25^{\circ}C$ is:						
	A.	6.0	B.	6.5			
	C.	7.0	D.	7.8			
(xii)	1000	s an example of solution:		0-114 1114			
	A. C.	Liquid in liquid Liquid in solid	B. D.	Solid in liquid Solid in solid	L		
(xiii)	18g al	ucose is dissolved in 90g of water. The					
		pressure is equal to:					
	A.	$\frac{1}{5}$	B.	1 51			
	C.	5 5.1	D.	51			
(wind)			277 E		_		
(xiv)		soda is obtained on industrial scale by n of sodium chloride is carried out in a ce					
	A.	Daniell's cell	B.	Down's cell			
	C.	Nelson's cell	D.	Voltaic cell			
(xv)	Which of the following statements is not correct about Galvanic cell? A. Anode is negatively charged B. Reduction occurs at anode C. Cathode is positively charged D. Reduction occurs at cathode						
(xvi)	If the r	ate equation of a reaction $2A + B \longrightarrow p$	roducts i	s rate - V[4] ² [P]			
(***)		is present in large excess, then order of					
	A.	3	B.	1			
	C.	2	D.	None of these			
(xvii)	xvii) The manufacture of sulphuric acid in the contact process needs platinum as a catalyst. The platinum catalyst is poisoned by: A. Silver B. Zinc						
	C.	Arsenic	D.	Argon			
14							
For Examiner's use only:							
			Total N	Marks:	17		
			Marks	Obtained:			

- 1HA-0909(L) ----

CHEMISTRY HSSC-I

Time allowed: 2:35 Hours

Total Marks Sections B and C: 68

NOTE:- Sections 'B' and 'C' comprise pages 1–2 and questions therein are to be answered on the separately provided answer book. Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C'. Use supplementary answer sheet i.e. Sheet–B if required. Write your answers neatly and legibly.

SECTION - B (Marks 42)

Q. 2 Attempt any FOURTEEN parts. The answer to each part should not exceed 5 to 6 lines. $(14 \times 3 = 42)$

(i)	Define the following with examples:					
	a. Gram Formula	01				
	b. Gram Atom	01				
	c. Gram Ion	01				
(ii)	Write down the methods for drying of the Crystallized Substance.	03				
(iii)	Justify that $180g$ of glucose and $342g$ of sucrose have same number of molecules					
	but different number of atoms present in them.	03				
(iv)	What is the general principle of liquefaction of gases? Also, define the Critical					
	Temperature with one example.	2+1				
(v)	Calculate the density of ammonia in $grams / dm^3$ at $752 mmHg$ and $55^{\circ}C$.	03				
(vi)	Vacuum distillation can be used to avoid decomposition of a sensitive liquid.					
	Explain with example.	03				
(vii)	Ionic crystals are brittle in nature while metals are ductile and malleable. Explain					
	the difference.	03				
(viii)	Calculate the value of principal quantum number if an electron in hydrogen atom					
	revolves in an orbit of energy $-0.242 \times 10^{-18} J$.	03				
(ix)	Derive de-Broglie equation about Dual Nature of Matter. What does this equation show?	2+1				
(x)	Define Ionization Energy. Name the factors on which ionization energy of an					
	atom depends.	03				
(xi)	Explain atomic orbital hybridization with reference to sp-Hybridization for Ethyne $\left(C_2H_2\right)$.	03				
(xii)	Define Enthalpy of Atomization and Enthalpy of Neutralization with examples.	03				
(xiii)	How Kc can be used to predict the direction of a chemical reaction?	03				
(xiv)	What is common ion effect? Explain with two examples?	03				
(xiv)	One molal solution of urea, in water is dilute as compared to one molar solution					
180 180	of urea, but the number of particles of solute is same. Justify it.	03				
(vvi)	What are Fhullioscopic and Cryoscopic constants?	03				

	(i vii)	Calculate the Oxidation Number of elements underlined in the following compounds:						
		a.	$Na_2 \subseteq O_3$	b.	$H N O_3$	03		
V		C.	$KMnO_4$	d.	$K_2 Cr_2 O_7$			
		e.	NaClO ₃	f.	$H_1 S O_A$			
	(xviii)		oxide Battery is a tiny and expens		4 7			
	(84111)	a.	Write down the chemical reaction			02		
		b.	Give any two uses of this batter		g place at mode and cambac.	01		
	(xix)	What is	Heterogeneous Catalysis? Expl	ain with	two examples.	03		
		SECTION - C (Marks 26)						
Note:-	Note:- Attempt any TWO questions. All questions carry equal marks.							
	(2	2 x 13 = 2	26)					
Q. 3	.3 a. State Graham's Law of Diffusion. Also verify it experimentally.				perimentally.	2+3		
	b.	Explain	the following with reasons:					
		(i)	Heat of sublimation of a substan	nce is gre	eater than that of vapourization.	02		
		(ii)	Earthenware vessels keep water	er cool.		02		
	C.		ure of two liquids, N_2H_4 and N_2O_4 are used in rockets. They produced N_2 ater vapours according to the following reaction.					
		$2N_2H_4$	$2N_2H_4 + N_2O_4 \longrightarrow 3N_2 + 4H_2O$					
		If $100g$ of N_2H_4 and $200g$ of N_2O_4 are allowed to react then:						
		(i)	How many grams of N_2 gas will	l be form	ed?	02		
		(ii)	Calculate the excess amount of	reagent	left unreacted.	02		
Q. 4	State Chadwick's experiment for discovery of Neutron. Also, write down any four properties of Neutron.				utron. Also, write down any four	3+2		
	b.	Differen	tiate between sigma and Pi bor	nds by gi	ving one example of each.	2+2		
	C.	Octane (C_8H_{18}) is a motor fuel. 1.80 g of a sample of octane is burned in a bomb						
		calorimeter having heat capacity $11.66kJK^{-1}$. The temperature of the calorimeter						
		increases from 21.36 C° to 28.78 C°. Calculate the heat of combustion for 1g of						
			Also, calculate the heat for one			2+2		
Q. 5	a.				equation to calculate the pH of a buffer.	1+3		
	b.	Balance the following ionic equations by ion-electron method:						
		(i)	$Cl^- + MnO_4^- \longrightarrow Cl_2 + Mn^{+2}$ (Ac	cidic med	lium)	02		
		(ii)	$S_2O_3^{-2} + OCl^{-1} \longrightarrow Cl^{-1} + S_4O_6^{-2}$	(Acidic n	nedium)	02		
	c.	Write down the important characteristics of Enzyme Catalysis.						

----- 1HA-0909(L) -----